
Cryptography Best Practices
Bart Preneel

February 2019

1

1

Cryptography Best Practices

Prof. Bart Preneel
COSIC, an imec lab at KU Leuven

Bart.Preneel(at)esatDOTkuleuven.be

http://homes.esat.kuleuven.be/~preneel

© Bart Preneel. All rights reserved

February 2019

2

Outline

• Architecture

• Network protocols

• Security APIs

• Key establishment: protocols,
generation, storage

• Implementing digital signature schemes

3

Symmetric vs. Asymmetric
Algorithms

• hardware costs: 1 K–
100K gates

• performance: 10
Mbit/s – 1000 Gbit/s

• keys: 64-256 bits

• blocks: 64-128-256
bits

• power consumption:
3-30 μJ/bit

• hardware costs: 12
K-1M gates

• performance: 10
Kbit/s – 100 Mbit/s

• keys: 256-4096 bits

• blocks: 256-4096 bits

• power consumption:
1000-2000 μJ/bit

• postquantum: keys
of 10-500 Kbyte 4

Architectures (1a) (sym.)

• Point to point
• Local
• Small scale

• Number of keys: 1 or n2

• Manual keying

Example:
ad hoc PAN or
WLAN

n nodes

5

Architectures (2a) (sym.)

• Centralized
• Small or large scale
• Manual keying

• Number of keys: n
• ! Central database: risk +

big brother
• Non-repudiation of origin?

(physical assumptions)

Example: WLAN,
e-banking, GSM

n nodes 6

Architectures (3a) (sym.)

• Centralized
• Small or large scale
• Manual keying

• Number of keys: n +
1/session

• ! Central database: risk + big
brother

• Non-repudiation of origin?
(physical assumptions)

Example: LAN
(Kerberos)

n nodes

Cryptography Best Practices
Bart Preneel

February 2019

2

7

Architectures (4a) (sym.)
• Decentralized
• Large scale

• Number of keys: n + N2

• Risks?
• Trust
• Hard to manage

Example: network
of LANs, GSM,
3G, 4G

n + N nodes 8

Architectures (5a) (sym.)
• Centralized

• Large scale

• Hierarchy

• Number of keys: n + N

Example: credit
card and ATM

n + N nodes

9

Architectures (1b) (asym.)

• Point to point
• Worldwide
• Small networks

• No CA (e.g. PGP)

Example:
P2P, international
organizations

n nodes 10

Architectures (2b) (asym.)

• Centralized

• Large or small scale
• Reduced risk

• Non-repudiation of origin

Example: B2C
e-banking

n nodes

11

Architectures (3b) (asym.)

• Centralized

• Small or large scale

• Reduced risk

• Non-repudiation of origin

Example: B2B
and e-ID

n nodes 12

Architectures (4b) (asym.)

• Decentralized

• Large scale

• (Open)

• Key management
architecture?

• Trust

Example: B2B,
GSM interoperator
communication

n + N nodes

Cryptography Best Practices
Bart Preneel

February 2019

3

13

Architectures (5b) (asym.)
• Centralized

• Large scale

• Hierarchy

• Open

Example: credit
card EMV

n + N nodes 14

When asymmetric cryptology?

• if manual secret key installation not
feasible (also in point-to-point)

• open networks (no prior customer
relation or contract)

• get rid of risk of central key store
• mutually distrusting parties

– strong non-repudiation of origin is needed

• fancy properties: e-voting

Important lesson: on-line trust relationships
should reflect real-word trust relationships

15

EMV Static Data Authentication (SDA)

Acquirer

POS DeviceIC Card

CERTISS

(PISS

certified
with SCA)

Issuer
SISS

Public Key

PISS

Private
Key

SCA

Public Key

PCA

Private
Key

Distributed to Acquirer
(Resides in Terminal)

PCA

IC

EPI

Static Card

data

16

EMV: dynamic/combined
data authentication

 Three layers:

EPI

Issuers

Cards

Issuer

Issuer

Issuer

Issuer

CA

Certificate for dynamic data
authentication of a credit card

DN: cn=Jan Peeters,

o=KBC, c=BE

Serial #: 8391037

Start: 3/12/18 1:00

End: 4/12/21 12:01

CRL: cn=RVC,

o=EMV, c=BE

Key:

CA DN: o=EMV, c=BE

Unique name owner

Unique serial number

Validity period

Revocation information

Public key

Name of issuing CA

CA’s Digital signature

on the

certificate
17 18

EMV Combined Data Authentication

Acquirer

POS Device IC Card

CERTISS

(PISS

certified
with SCA)

Issuer
SISS

Public Key

PISS

Private
Key

SCA

Public Key

PCA

Private
Key

Distributed to Acquirer
(Resides in Terminal)

PCA

IC

EPI

SIC
PIC

Private
Key

Public Key Static Card

data

CERTIC

(PIC

certified
with SISS)

Authenticate and Sign Transaction with SIC

Cryptography Best Practices
Bart Preneel

February 2019

4

19

Warning about EMV
http://www.cl.cam.ac.uk/research/security/banking/nopin/oakland10chipbroken.pdf

• Pin checking and authentication are not coupled
• EMV PIN verification “wedge” vulnerability S.J.

Murdoch, S. Drimer, R. Anderson, M. Bond, IEEE Security
& Privacy 2010

20

Network protocols

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Host Host

Router TLS/SSL
IPsec

S/MIME

PPTP,
L2TP

21

Where to put security?

• Application layer:
– closer to user

– more sophisticated/granular controls

– end-to-end

– but what about firewalls?

• Lower layer:
– application independent

– hide traffic data

– but vulnerable in middle points

• Combine?
22

Where to put security? (2)

From: Bob@crypto.com

To: Alice@digicrime.com

Subject: Re: Can you meet me on Monday at
3pm to resolve the price issue?

This proposal is acceptable for me.

-- Bob

23

Security APIs
• Security module controls access to and

processing of sensitive data
– executes cryptographic commands, e.g. PIN

checking, encryption,…

Security
module

hardware or software

Host

Security API

I/O

network

24

Master key/data key

• Load master 3DES key KM (tightly controlled)

• Load data key:
3DESKM(K1)|| 3DESKM(K2)|| 3DESKM(K3)

• Send plaintext P and ask for encryption
DESK1(DES-1

K2(DESK3(P)))

DES P DES-1 DES

1 2 3

%^C&
@&^(

Cryptography Best Practices
Bart Preneel

February 2019

5

25

Master key/data key (2)
• Load master 3DES key KM (tightly controlled)

• Load corrupted data key:
DESKM(K1)|| DESKM(K1)|| DESKM(K1)

• Send plaintext P and ask for encryption
DESK1(DES-1

K1(DESK1(P))) = DESK1(P)

DES P DES-1 DES

1 1 1

%^C&
@&^(

26

Control vectors in the IBM 4758 (1)

• Potted in epoxy resin

• Protective tamper-sensing membrane,
chemically identical to potting compound

• Detectors for temperature & X-Rays

• “Tempest” shielding for RF emission

• Low pass filters on power supply rails

• Multi-stage “latching” boot sequence

= STATE OF THE ART PROTECTION!

27

IBM 4758 Features of the IBM 4758

• Control vector: type (e.g., PIN, data, MAC)
store key of type type as E Km + “type” (k)
– Output of encryption with key of type “PIN” is

never allowed to leave the box

– Output of encryption with key of type data,
MAC, … may leave the box

• High security master key import: 3 shares
– Import Km as KmA + KmB + KmC

28

Master key import

1

KmA KmB KmC

Km = KmA + KmB + KmC

29

Fraudulous import

2

KmA KmB
KmC = KmC +
“data” – “PIN”

Km* = KmA + KmB + KmC* = Km + “data” – “PIN”
30

Cryptography Best Practices
Bart Preneel

February 2019

6

The attack

Transport PIN key k from box 1 to box 2

1. Encrypt on box 1, type PIN:

x = E Km + “PIN” (k)

2. Decrypt on box 2, type data:

D Km* + “DATA” (x) = D Km + “PIN” (x) = k

The system now believes that k is a key to
decrypt data, which means that the result will
be output (PINs are never output in the clear)

31 32

Lessons learned: security APIs

• Complex – 150 commands
• Need to resist to insider frauds
• Hard to design – can go wrong in many

ways
• Need more attention

Further reading: Mike Bond, Cambridge
University
http://www.cl.cam.ac.uk/users/mkb23/research.html

“Efficient padding oracle attacks on
cryptographic hardware” (PKCS#11 devices)
[Bardou+ 12] most attacks take less than 100 milliseconds

Device PKCS#1v1.5 CBC pad
token session token session

Aladdin eTokenPro X X X X

Feitian ePass 2000 OK OK N/A N/A

Feitian ePass 3003 OK OK N/A N/A

Gemalto Cyberflex X N/A N/A N/A

RSA Securid 800 X N/A N/A N/A

Safenet iKey 2032 X X N/A N/A

SATA dKey OK OK OK OK

Siemens CardOS X X
(89 secs)

N/A N/A

The secure hardware delusion
e.g. August 2011 Diginotar: target Iranian opposition

TLS

Ceci n’est pas
un HSM

35

Key management

• Key establishment protocols

• Key generation

• Key storage

• Key separation (cf. Security APIs)

36

Key establishment protocols:
subtle flaws

• Person-in-the middle attack
– Lack of protected identifiers

• Reflection attack

• Triangle attack

Cryptography Best Practices
Bart Preneel

February 2019

7

37

Attack model:
Needham and Schroeder [1978]:

We assume that the intruder can interpose
a computer in all communication paths,
and thus can alter or copy parts of
messages, replay messages, or emit
false material. While this may seem an
extreme view, it is the only safe one
when designing authentication protocols.

38

Person-in-the middle attack on Diffie-
Hellman

• Eve shares a key k1 with Alice and a key k2
with Bob

• Requires active attack

 x1

 y1

k1 =(y1) x1 =(x1)y1

 x2

 y2

k2 =(y2) x2 =(x2)y2

39

Entity authentication

Alice and Bob share a secret K

nA

EK(nA||nB)

nB

K K

40

Entity authentication: reflection attack

Eve does not know K and wants to
impersonate Bob

nA

nA

EK(n||nA’)

EK(nA||nA’ =nB)

nB

K

41

Needham-Schroeder (1978)

Alice and Bob know each other’s public key
PA and PB

EPB(nA||A)

EPA(nB||nA)

EPB(nB)

Derive a
session key

k from
nA||nB

SA SB

42

Lowe’s attack on Needham-Schroeder
(1995)

• Alice thinks she is talking to Eve

• Bob thinks he is talking to Alice

EPE(nA||A)

EPA(nB||nA)

EPE(nB)

EPB(nA||A)

EPA(nB||nA)

EPB(nB)

Eve

SA SB

Cryptography Best Practices
Bart Preneel

February 2019

8

43

Lowe’s attack on Needham-Schroeder (1995)

• Eve is a legitimate user = insider attack

• Fix the problem by inserting B in message 2

EPB(nA||A)

EPA(nB||nA||B)

EPB(nB)

SA SB

44

Lessons from Needham-Schroeder (1995)

• Prudent engineering practice (Abadi &
Needham): include names of principals in all
messages

• IKE v2 – plausible deniability: don’t include
name of correspondent in signed messages:
http://www.ietf.org/proceedings/02nov/I-D/draft-
ietf-ipsec-soi-features-01.txt

45

Rule #1 of protocol design

Don’t!

46

Why is protocol design so hard?

• Understand the security properties
offered by existing protocols

• Understand security requirements of
novel applications

• Understanding implicit assumptions
about the environment underpinning
established properties and established
security mechanisms

47

And who are Alice and Bob
anyway?

• Users?

• Smart cards/USB tokens of the users?

• Computers?

• Programs on a computer?

If Alice and Bob are humans,
they are vulnerable to social

engineering 48

Random number generation

• “The generation of random numbers is too
important to be left to chance”

• John Von Neumann, 1951: "Anyone who
considers arithmetical methods of producing
random digits is, of course, in a state of sin”

• Used for
– key generation

– encryption and digital signatures
(randomization)

– protocols (nonce)

Cryptography Best Practices
Bart Preneel

February 2019

9

49

Key generation: overview

Hardware
entropy source

Software
entropy source

Entropy pool

State update

Initialization Internal state

extract

Generate
key

Monitoring

random bits

keys
50

Key generation: hardware entropy sources

• radioactive decay

• reverse biased diode

• free running oscillators

• radio

• audio, video

• hard disk access time (air turbulence)

• manually (dice)

• lava lamps

Risk: physical attacks, failure

51

Key generation: software entropy sources

• system clock
• elapsed time between keystrokes or

mouse movements
• content of input/output buffers
• user input
• operating system values (system load,

network statistics)
• interrupt timings

Risk: monitoring, predictable
52

Key generation: monitoring

• Statistical tests (NIST FIPS 140)
• typical tests: frequency test, poker test,

run’s test
• necessary but not sufficient
• 5 lightweight tests to verify correct

operation continuously
• stronger statistical testing necessary

during design phase, after production
and before installation

53

State update

• Keep updating entropy pool and
extracting inputs from entropy pool to
survive a state compromise

• Combine both entropy pool and existing
state with a non-invertible function (e.g.,
SHA-512, x2 mod n,…)

54

Output function

• One-way function of the state since for
some applications the random numbers
become public

• A random string is not the same as a
random integer mod p

• A random integer/string is not the same
as a random prime

Cryptography Best Practices
Bart Preneel

February 2019

10

55

What not to do

• use rand() provided by programming language
or O/S

• restore entropy pool (seed file) from a backup
and start right away

• use the list of random numbers from the RAND
Corporation

• use numbers from http://www.random.org/
– 66198 million random bits served since October

1998
• use digits from π, e, π/e,…
• use linear congruential generators [Knuth]

– xn+1 = a xn + b mod m
56

RSA moduli

• Generate a 1024-bit RSA key
Use random bit generation to pick random a

integer r in the interval [2512,2513-1]

If r is even r:=r+1

Do r:=r+2 until r is prime; output p

Do r:=r+2 until r is prime; output q

What is the problem?

The Infineon Library: RSAlib
[Nemec,Sýs,Švenda,Klinec,Matyáš ‘17]

• RSA keys: product of two large primes: N = p.q
• How do I generate p and q?
• Pick a random number x and test for primality
• Improvement 1: pick a random odd number x and test

– Note x = 1 mod 2

• Improvement 2: pick a random odd number x not
divisible by 3 and test for primality
– Note: x = 1 mod 6 or x = 5 mod 6

• Improvement 3: pick a random odd number x not
divisible by 3 and 5 and test for primality
– Note: x = 1,7,11,13 mod 15

• Idea: control the value of candidates x modulo the
product of the first n primes

The Infineon Library: RSAlib

• RSAlib: generate prime candidates x as follows
– Mn = product of first n primes
– x = k . Mn + (65537a mod Mn)

• Unfortunately this can be detected easily:
N = 65537a mod Mn

• And Mn was chosen too large so k and a are
small and can be recovered easily leading to
factorization:
– 1024-bit keys: < 3 CPU months on a single core
– 2048-bit keys: 100 CPU-years

• Improvements by 25%: [Bernstein-Lange]

The Infineon Library: RSAlib

• https://crocs.fi.muni.cz/public/papers/rsa%1Fccs17

• Aug. 2016: non-randomness of Infineon keys detected
• Jan. 2017: vulnerability found
• Feb. 2017: Infineon warned
• 16 Oct. 2017: results announced (without details)
• 31 Oct. 2017: paper released
• 3 Nov. 2017: Estonia blocks Infineon keys

(more than 750,000 ID cards)
• Other problems: Yubikey, TPMs, TLS, Github,…

RSAlib was certified by BSI based on tests by TÜV
Informationstechnik GmbH

60

What to consider/look at
• Standardized random number generators: NIST

SP800- 90C (but do not use Dual_EC_DRBG)
• Modern Intel processors have a built-in RNG (since

2010)
• Learn from open source examples: ssh, openpgp, linux

kernel source (e.g. /dev/random – but slow)
• Yarrow/Fortuna
• ANSI X9.17 (but parameters are marginal)
• Other references:

– D. Wagner’s web resource: http://www.cs.berkeley.edu/~daw/rnd/
– P. Gutmann, http://researchspace.auckland.ac.nz/handle/2292/2310
– L. Dorrendorf, Z. Gutterman, Benny Pinkas, Cryptanalysis of the Windows

random number generator. ACM CCS 2007, pp. 476-485
– Z. Gutterman, Benny Pinkas, T. Reinman, Analysis of the Linux random number

generator. IEEE Symp. Security and Privacy 2006, pp. 371-385
– Mario Cornejo, Sylvain Ruhault. Characterization of Real-Life PRNGs under

Partial State Corruption. ACM CCS 2014, pp. 1004-1015

Cryptography Best Practices
Bart Preneel

February 2019

11

61

How to store keys
• Disk: only if encrypted under another key

– But where to store this other key?

• Human memory: passwords limited to 48-64
bits and passphrases limited to 64-80 bits

• Removable storage: Floppy, USB token,
iButton, PCMCIA card

• Cryptographic co-processor: smart card USB
token

• Cryptographic co-processor with secure
display and keypad

• Hardware security module
• PUFs: Physical Uncloneable Functions 61

Secure key storage with non-initialized SRAM

Due to deep sub-micron
process variations ICs are

intrinsically unique

Start–up SRAM values
establish a unique and

robust fingerprint

The electronic fingerprint
is turned into a secure
secret key, which is the
foundation of enhanced

security

In the field (many times)

One-Time Process (during production)

SRAM PUF R
Helper Data
Algorithm

HD

R’ Helper Data
Algorithm

Key

Helper Data (HD)

SRAM PUF

E
n

ro
llm

en
t

R
ec

o
n

-
st

ru
ct

io
n

Slide credit: Intrinsic ID62

63

How not to store keys
[Shamir-van Someren’99] Playing hide and seek
with stored keys, Financial Cryptography

63
64

Implementation attacks
cold boot attack

Why break cryptography? Go for the key!

Data remanence in DRAMs
Lest We Remember: Cold Boot Attacks on Encryption Keys
[Halderman-Schoen-Heninger-Clarkson-Paul-Calandrino-Feldman-
Appelbaum-Felten’08]

– Works for AES, RSA,…

– Products: BitLocker, FileVault, TrueCrypt, dm-crypt, loop-
AES

5 sec 30 sec 60 sec 5 min

65

Cold boot attacks on keys in memory
(Feb. 2008)

• Key is stored in DRAM when machine is in
sleep or hibernation

• Option 1: Reboot from a USB flash drive with
O/S and forensic tools (retaining the memory
image in DRAM), scan for the encryption
keys and extract them.

• Option 2: physically remove the DRAM
– Cool DRAM using compressed-air canister (-50

C) or liquid nitrogen (-196 C)

• Solution: hardware encryption or 2-factor
authentication

66

How to back-up keys

• Backup is essential for decryption keys
• Security of backup is crucial
• Secret sharing: divide a secret over n

users so that any subset of t users can
reconstruct it

Destroying keys securely
is harder than you think

$ 11,000

Cryptography Best Practices
Bart Preneel

February 2019

12

Implementing crypto libraries is hard

Check out this 2017 talk by Quan Nguyen
(quannguyen@google.com)

Practical Cryptanalysis of Json Web Token
and Galois Counter Mode’s Implementations
https://rwc.iacr.org/2017/Slides/nguyen.quan.pdf

67

Implementing digital signatures is
hard

• ElGamal

• RSA

68

The risks of ElGamal (1/3)

• ElGamal-type signatures (including DSA, ECDSA)

• public parameters: prime number p, generator g
(modulo p operation omitted below)

• private key x, public key y = gx

• signature (r,s)
– generate temporary private key k and public key r = gk

– solve s from h(m) ≡ x r + k s mod (p−1)

• verification:
– Signature verification: 1 < r < p and h(m) ≡ yr rs mod p

The risks of ElGamal (2/3)

• long term keys: y = gx

• short term keys: r = gk

• the value k has to be protected as strongly as
the value x
– Ex. 1: NIST had to redesign the DSA FIPS standard

because of a subtle flaw in the way k was generated
[Bleichenbacher’01]

– Ex 2: attack on ElGamal as implemented in GPG
[Nguyen’03]

The risks of ElGamal (3/3)

• y = gx

• signature:
– r = gk

– h(m) ≡ x r + k s mod (p−1)

• what if k would be the same every time?
– h(m1) ≡ x r + k s mod (p−1)
– h(m2) ≡ x r + k s mod (p−1)

• 2 linear equations in 2 unknowns: easy to
solve: yields the signing key x

• one solution: choose k = h(m || x)

Problematic public keys (1/3)

• 11.7 million openly accessible
public keys (TLS/PGP)

• 6.4 million distinct RSA moduli
• rest: ElGamal/DSA (50/50) and

1 ECDSA

• easy to factor: 0.2% of RSA keys
• 12,000 keys!
• 40% have valid certs

12 million openly accessible public
keys (5.8 TLS/6.2 SSH)

23 million hosts (12.8/10.2)

1%: 512-bit RSA keys

• 5.6% of TLS hosts share public
keys

• 5.2% default manufacturer keys
• 0.34% have by accident the

same key

• 1.1% of RSA keys occur in >1
certificate

• easy to factor: 0.5% of TLS hosts
and 0.03% of SSH hosts

• DSA key recovery: 1.6% of DSA
hosts

[Lenstra-Hughes+ Crypto 12] [Heninger+ Usenix Sec. 12]

Cryptography Best Practices
Bart Preneel

February 2019

13

Problematic public keys (2/3)

• why ???

• low entropy during key generation
• RSA keys easy to factor, because they form pairs

like: n = p.q and n’ = p’.q so gcd(n,n’)=q

• embedded systems
• routers, server

management cards,
network security devices

• key generation at first
boot

RSA versus DSA
Ron was wrong, Whit is right or vice versa?

• DSA keys: reuse of randomness during signing or
weak key generation

Problematic public keys (3/3)

ethical problem: how to report this?

details:
Lenstra, Hughes, Augier, Bos, Kleinjung, Wachter, “Ron was wrong,

Whit is right” http://print.iacr.org/2012/064.pdf, or with as title
“Public keys,” Crypto 2012.

Heninger, Durumeric, Wustrow, Halderman, “Mining Your Ps and Qs:
Detection of Widespread Weak Keys in Network Devices,” Usenix
Security 2012,
https://www.usenix.org/conference/usenixsecurity12/tech-
schedule/technical-sessions

More PRNG flaws

• 1996: Netscape SSL [Goldberg-Wagner]

• 2008: Debian SSL [Bello]

• 15 Aug. 2013: Android Java and OpenSSL PRNG
flaw led to theft of Bitcoins

• Sept. 2013: Bullrun and DUAL_EC_DRBG

16 Sept. 2013 Factoring RSA keys from certified
smart cards: Coppersmith in the wild
[Bernstein-Chang-Cheng-Chou-Heninger-Lange-van Someren’13]
IACR Cryptology ePrint Archive 2013: 599

184 keys from Taiwan Citizen Digital Certificate cards
card + OS: EAL 4+; FIPS 140-2 Level 2

How to sign with RSA?
• public key: (n,e)
• private key: d
• s = t d mod n = t 1/e mod n

• But
– message M is often larger than modulus n
– RSA(x*y) = RSA(x)*RSA(y)
– RSA(0) = 0, RSA(1) = 1,…

• Solution: hash and add redundancy
– PKCS #1
– RSA-PSS 76

RSA Signatures: PKCS #1 v1.5 [source: RSA

Labs]
M

Hash

00 01 ff ff ff ff ff … ff ff ff 00 HHashID

00 01 ff … ff 00 HHashID Magic

Problem: most signature verification software
would accept a signature on M of the following
form:

Verification of RSA signature s on M
Compute t = se mod n and check that t has the required
format

public key: (n,e)

private key: d

Generation of RSA signature on M: s = t d mod n = t 1/e

mod n

t =

77

Attack on PKCS #1 v1.5 implementations (1)
[Bleichenbacher06]

00 01 ff… ff 00 HHashID Magic

• consider RSA with public exponent e = 3

• for any hash value H, it is easy to compute a
string “Magic” such that the above string is a
perfect cube of 3072 bits
• example of a perfect cube 1728 = 123

• consequence:
– one can sign any message (H) without knowing the

private key

– this signature works for any public key that is longer
than 3072 bits

• vulnerable: OpenSSL, Mozilla NSS, GnuTLS 78

Cryptography Best Practices
Bart Preneel

February 2019

14

Fix of Bleichenbacher’s attack

• Write proper verification code (but the signer
cannot know which code the verifier will use)

• Use a public exponent that is at least 32 bits

• Upgrade – finally – to RSA-PSS

79

Conclusion

• Implementing cryptography requires a high
level of cryptographic expertise

• Application developers should become
specialists

• “A specialist is someone who knows when
to call an expert” [Peter Landrock]

80

